纯净、安全、绿色的下载网站

首页|软件分类|下载排行|最新软件|IT学院

当前位置:首页IT学院IT技术 → Python三维绘图之Matplotlib库如何使用

Python三维绘图之Matplotlib库如何使用

hitrjj   2020-09-20 我要评论

本文着重给大家讲解了关于Python三维绘图之Matplotlib库如何使用,文中通过代码实例讲解的非常细致,对大家的工作和学习具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

前言

在遇到三维数据时,三维图像能给我们对数据带来更加深入地理解。python的matplotlib库就包含了丰富的三维绘图工具。

1.创建三维坐标轴对象Axes3D

创建Axes3D主要有两种方式,一种是利用关键字projection='3d'l来实现,另一种则是通过从mpl_toolkits.mplot3d导入对象Axes3D来实现,目的都是生成具有三维格式的对象Axes3D.

#方法一,利用关键字
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

#定义坐标轴
fig = plt.figure()
ax1 = plt.axes(projection='3d')
#ax = fig.add_subplot(111,projection='3d') #这种方法也可以画多个子图


#方法二,利用三维轴方法
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

#定义图像和三维格式坐标轴
fig=plt.figure()
ax2 = Axes3D(fig)

2.三维曲线和散点

随后在定义的坐标轴上画图:

import numpy as np
z = np.linspace(0,13,1000)
x = 5*np.sin(z)
y = 5*np.cos(z)
zd = 13*np.random.random(100)
xd = 5*np.sin(zd)
yd = 5*np.cos(zd)
ax1.scatter3D(xd,yd,zd, cmap='Blues') #绘制散点图
ax1.plot3D(x,y,z,'gray') #绘制空间曲线
plt.show()

在这里插入图片描述

3.三维曲面

下一步画三维曲面

fig = plt.figure() #定义新的三维坐标轴
ax3 = plt.axes(projection='3d')

#定义三维数据
xx = np.arange(-5,5,0.5)
yy = np.arange(-5,5,0.5)
X, Y = np.meshgrid(xx, yy)
Z = np.sin(X)+np.cos(Y)


#作图
ax3.plot_surface(X,Y,Z,cmap='rainbow')
#ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap='rainbow) #等高线图,要设置offset,为Z的最小值
plt.show()

在这里插入图片描述

如果加入渲染时的步长,会得到更加清晰细腻的图像:
ax3.plot_surface(X,Y,Z,rstride = 1, cstride = 1,cmap='rainbow'),其中的row和cloum_stride为横竖方向的绘图采样步长,越小绘图越精细。

在这里插入图片描述

4.等高线

同时还可以将等高线投影到不同的面上:

from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

#定义坐标轴
fig4 = plt.figure()
ax4 = plt.axes(projection='3d')

#生成三维数据
xx = np.arange(-5,5,0.1)
yy = np.arange(-5,5,0.1)
X, Y = np.meshgrid(xx, yy)
Z = np.sin(np.sqrt(X**2+Y**2))

#作图
ax4.plot_surface(X,Y,Z,alpha=0.3,cmap='winter')   #生成表面, alpha 用于控制透明度
ax4.contour(X,Y,Z,zdir='z', offset=-3,cmap="rainbow") #生成z方向投影,投到x-y平面
ax4.contour(X,Y,Z,zdir='x', offset=-6,cmap="rainbow") #生成x方向投影,投到y-z平面
ax4.contour(X,Y,Z,zdir='y', offset=6,cmap="rainbow")  #生成y方向投影,投到x-z平面
#ax4.contourf(X,Y,Z,zdir='y', offset=6,cmap="rainbow")  #生成y方向投影填充,投到x-z平面,contourf()函数

#设定显示范围
ax4.set_xlabel('X')
ax4.set_xlim(-6, 4) #拉开坐标轴范围显示投影
ax4.set_ylabel('Y')
ax4.set_ylim(-4, 6)
ax4.set_zlabel('Z')
ax4.set_zlim(-3, 3)

plt.show()

在这里插入图片描述在这里插入图片描述

5.随机散点图

可以利用scatter()生成各种不同大小,颜色的散点图,其参数如下:

#函数定义
matplotlib.pyplot.scatter(x, y, 
	s=None,  #散点的大小 array scalar
	c=None,  #颜色序列  array、sequency
	marker=None,  #点的样式
	cmap=None,  #colormap 颜色样式
	norm=None,  #归一化 归一化的颜色camp
	vmin=None, vmax=None,  #对应上面的归一化范围
 	alpha=None,   #透明度
	linewidths=None,  #线宽
	verts=None,  #
	edgecolors=None, #边缘颜色
	data=None, 
	**kwargs
	)
#ref:https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

#定义坐标轴
fig4 = plt.figure()
ax4 = plt.axes(projection='3d')

#生成三维数据
xx = np.random.random(20)*10-5  #取100个随机数,范围在5~5之间
yy = np.random.random(20)*10-5
X, Y = np.meshgrid(xx, yy)
Z = np.sin(np.sqrt(X**2+Y**2))

#作图
ax4.scatter(X,Y,Z,alpha=0.3,c=np.random.random(400),s=np.random.randint(10,20, size=(20, 40)))   #生成散点.利用c控制颜色序列,s控制大小

#设定显示范围

plt.show()

在这里插入图片描述

Finish

Todo bar

总结


相关文章

猜您喜欢

  • 万万没想到Chrome的历史记录竟然可以这么玩

    最近遇到一个棘手的问题,需要查找含有某个关键字的网页,但是通过chrome原生的历史记录查出来的,查到的结果并不满意,今天小编就给大家分享一篇教程帮助大家解决Chrome历史记录的问题,感兴趣的朋友一起看看吧..
  • springMVC怎样对输入数据校验实现代码

    数据的校验是交互式网站一个不可或缺的功能,数据验证分为客户端验证和服务器端验证,本文着重讲解了springMVC怎样对输入数据校验,欢迎大家阅读和收藏..

网友评论

Copyright 2020 www.mmKan.net 【漫漫看下载站】 版权所有

声明:所有软件和文章来自软件开发商或者作者 如有异议 请与本站联系 点此查看联系方式